CONSTRUCTION
Environmental Safety of Construction

DOI.org/10.5281/zenodo.897017

Kirichenko K., Kosyanov D., Drozd V., Gridasov A., Matokhin G., Samsonov A., Savchenko V., Kulesh V., Karabtsov A., Agoshkov A., Golokhvast K.

KONSTANTIN KIRICHENKO, Postgraduate, Leading Specialist, e-mail: Kirichenko2012@gmail.com
DENIS KOSYANOV, Scientific Employee of the Department of Theoretical and Experimental Physics, e-mail: kosianov.diu@dvfu.ru
VALERIY SAVCHENKO, Doctor of Physical and Mathematical Sciences, Professor of the Department of General Physics, e-mail: savchenko.vn@dvfu.ru
School of Natural Sciences, Far Eastern Federal University
VLADIMIR DROZD, Postgraduate, Research Fellow, e-mail: v_drozd@mail.ru
ALEXANDER GRIDASOV, Candidate of Technical Sciences, Head of the Department of Welding Production, e-mail: gridasov.av@dvfu.ru
GENNADIY MATOKHIN, Doctor of Technical Sciences, Professor of the Department of Welding, e-mail: matohin@bk.ru
ANATOLIY SAMSONOV, Doctor of Technical Sciences, Professor of the Department of Ship Power Engineering and Automation, e-mail: aicam@mail.ru
VICTOR KULESH, Doctor of Technical Sciences, Professor of the Department of Shipbuilding and Ocean Engineering, e-mail: vkulesh@mail.ru
ALEXANDER AGOSHKOV, Doctor of Technical Sciences, Professor, Head of the Department of Life Safety in the Technosphere, e-mail:  bgdtsdvfu@mail.ru
KIRILL GOLOKHVAST, Doctor of Biology, Professor of the Department of Health and Safety in the Technosphere, e-mail: droopy@mail.ru
School of Engineering, Far Eastern Federal University
8 Sukhanova St., Vladivostok, Russia, 690091
ALEXANDER KARABTSOV, Head of Laboratory, e-mail: e-mail: karabzov@fegi.ru
Far East Geological Institute, Far Eastern Branch, Russian Academy of Sciences
159 Prospekt 100-letiya, Vladivostok, Russia, 690022

The comparative analysis of particulate aerosol welding electrodes during welding with different types of coating

Abstract: A series of experiments on arc welding with commercial coated electrodes of rutile, basic, acidic and rutile-cellulose types was carried out at a current strength of I = 100 and 150 A. The features of the propagation of welding smoke particles in the working area space are revealed, and the types of geometry of the 3D models of their propagation are proposed depending on the given process parameters. The maximum decrease (by half) of the particle size up to 0.1 μm with increasing welding current strength is typical for the burning of electrodes of the main type. For this type of electrodes, a bifractional mechanism for the formation of welding smoke particles is shown, the fine fraction of which is characterized by a high concentration of manganese-containing compounds (3rd hazard class). The scientific and practical recommendations for conducting welding operations are given.

Key words: welding aerosol, Electric voltage, welding electrodes, nanoparticles, atmospheric suspensions, morphology, toxicology, PM10.

REFERENCES

  1. Antonini J.M. Health effects of welding. Crit. Rev. Toxicol. 2003(33):61-103.
  2. Antonini J.M., Taylor M.D., Zimmer A.T., Roberts J.R. Pulmonary responses to welding fumes: role of metal constituents. J. of Toxicological Environmental Health. 2004;67(3):233-249.
  3. Berlinger B., Ellingsen D.G., Náray M. et al. A study of the bio-accessibility of welding fumes. J. Environ. Monit. 2008(10):1448-1453.
  4. Berlinger B., Benker N., Weinbruch S. et al. Physicochemical characterization of different welding aerosols. Anal. Bioanal. Chem. 2011(399):1773-1780.
  5. Chashchin M.V., Ellingsen D.G., Cabushka I.S. et al. Welding fumes like impact factor of inflammation and coagulation. J. Public Health Environ. 2013(5):14-15.
  6. Christensen S.W., Bonde J.P., Omland Ø. A prospective study of decline in lung function in relation to welding emissions. J. of Occupational Medicine and Toxicology. 2008;3(1):6.
  7. Dahal S., Kim T., Ahn K. Indirect prediction of welding fume diffusion inside a room using computational fluid dynamics. Atmosphere. 2016(7):74.
  8. El-Zein M., Malo J.L., Infante-Rivard C., Gautrin D. Prevalence and association of welding related systemic and respiratory symptoms in welders. Occupational and Environmental Medicine. 2003;60(9):655-661.
  9. Ennan A.A., Kiro S.A., Oprya M.V., Vishnyakov V.I. Particle size distribution of welding fume and its dependency on conditions of shielded metal arc welding. J. Aerosol Sci. 2013(64):103-110.
  10. Flynn M.R., Susi P.  Neurological risks associated with manganese exposure from welding operations – A literature review. Int. J. Hyg. Environ. Health. 2009 (212):459–469.
  11. Grishagin V.M. The possibility of recycling welding aerosol's solid component exemplified by the Kuznetsk basin. Ecology and Industry of Russia. 2012(8):4-7.
  12. Grishagin V.M., Kiselev S.V., Filonov A.V. Filter-ventilation equipment of welding production: situation and prospects. International J. of Applied and Fundamental Research. 2015(9):14-17.
  13. Gumenyuk V.I., Vlasova O.S., Semenova E.A.,Tomareva I.A. Analysis of the composition of dust and gases of welding and plasma incision of metals. Sovremennaa nauka i innovacii. 2016;1:104-111.
  14. Hariri A., Yusof M.Z.M., Leman A.M. Comparison of welding fumes exposure during standing and sitting welder’s position. International J. of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 2013;7(10):1963-1966.
  15. Hoet P., Brüske-Hohlfeld I., Salata O. Nanoparticles – known and unknown health risks. Journal of Nanobiotechnology. 2004;2:12.
  16. Ibfelt E., Bonde J.P., Hansen J. Exposure to metal welding fume particles and risk for cardiovascular disease in Denmark: a prospective cohort study. Occup Environ Med. 2010; 67(11):772-777.
  17. Jenkins N.T., Eagar T.W. Fume formation from spatter oxidation during arc welding. Science and Technology of Welding and Joining. 2005;10(5):537-543.
  18. Jenkins N.T., Pierce W.M.G., Eagar T.W. Particle size distribution of as metal and flux cored arc welding fumes. Weld. J. 2005(84):156-163.
  19. Jenkins N.Т., Eager T.W Chemical analysis of welding fume particle – airborne particle size is the most important factor in determining the accuracy of a method for chemical analysis. Welding J. 2005;84(6):87-93.
  20. Kirichenko K.Yu., Drozd V.A., Chaika V.V., Gridasov A.V., Golokhvast K.S. Welding aerosol as a source of hazardous to health man-made nanoparticles: granulometric analysis. Proceedings of the Samara Scientific Center. 2015(17):662-665.
  21. Kirichenko K.Yu., Drozd V.A., Gridasov A.V., Kobylyakov S.P., Kholodov A.S., Chaika V.V., Golokhvast K.S. 3D-modeling of the distribution of welding aerosol nano and microparticles in the working area. Nano Hybrids and Composites. 2016(13):232-238.
  22. Kobayashi M., Maki S., Hashimoto Y., Suga T. Investigations on chemical composition of welding fumes. Welding J. 1983;62(7):190-196.
  23. Kobayashi M., Maki S., Hashimoto Y., Suga T. Some considerations about the formation mechanisms of welding fume Weld. World. 1978;16:238-245.
  24. Konarski P., Iwanejko I., Cwil M. Core-shell morphology of welding fume microand nanoparticles. Vacuum. 2003(70):385-389.
  25. Letiagin I.Iu. Assessment of stability of burning of a welding arch when welding by the covered electrodes. Bulletin PNRPU. Mechanical engineering, materials science. 2015(17):71-87.
  26. Lighty J.S., Veranth J.M., Sarofim A.F. Combustion aerosols: factors governing their size and composition and implications to human health. J. Air Waste Manag. Assoc. 2000(50):1565-1618.
  27. McManus T.N., Haddad A.N. Chromium emissions during welding in an aluminum shipbuilding environment: The study assessed emissions using a welding machine and production welding operations. Weld. J., 2016 (95):86-92.
  28. Nemenko B.A., Arynova G.A., Iliyasova A.D. Estimation of the danger degree of the fine disperse dust particles in the air. Vestnik KazNMU. 2014(3):133-135.
  29. Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., Cox C. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology. 2004;6:437-445.
  30. Oprya M., Kiro S., Worobiec A. et al. Size distribution and chemical properties of welding fumes of inhalable particles, J. Aerosol Sci. 2012(45):50–57.
  31. Orlov R.V., Strelyaeva A.B., Barikaeva N.S. Evaluation of suspended particle PM10 and PM2.5 in atmospheric air of residential areas. Solar Energy. 2013(12):39-41.
  32. Pauluhn J. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Toxicol. Sci. 2009(109):152-167.
  33. Pervez S., Mathew J., Sharma R. Investigation of personal-indoor-outdoor particulate relationships in welding workshops. J. of Scientific & Industrial Research. 2005;64(6):454-458.
  34. Pokhodnya I.K., Yavdoshchin I.R., Gubenya I.P. Welding aerosol: factors of effect, physical properties, methods of analysis. Paton Weld. J. 2011(6):39-42.
  35. Racette B.A., McGee-Minnich L., Moerlein S.M. et al. Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology. 2001;56:8-13.
  36. Racette B.A., Tabbal S.D., Jennings D. et al. Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology. 2005;64:230-235.
  37. Samoli E., Peng R., Ramsay T., Pipikou M. et al. Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA Study. Environmental Health Perspectives. 2008(116):1480-1486.
  38. Sellappa S., Prathyumnan S., Keyan K.S. et al. Evaluation of DNA damage induction and repair inhibition in welders exposed to hexavalent chromium. Asian Pac J Cancer Prev. 2010;11(1):95-100.
  39. Sowards J.W., Lippold J.C., Dickinson D.W., Ramires A.J. Characterization procedure for the analysis of arc welding fume. Weld. J. 2008(87):76-83.
  40. Sowards J.W., Lippold J.C., Dickinson D.W., Ramirez A.J. Characterization of welding fume from SMAW electrodes. Pt I. Weld. J. 2008 (87):106-112.
  41. Sowards J.W., Lippold J.C., Dickinson D.W., Ramirez A.J. Characterization of welding fume from SMAW electrodes. Pt II. Weld. J. 2010(89):82-89.
  42. Vandenplas O., Delwiche J.P., Vanbilsen M.L. et al. Occupational asthma caused by aluminum welding. European Respiratory J. 1998;11(5):1182-1184.
  43. Voitkevich V. Welding fumes: formation, properties and biological effects. Cambridge: Abington publ. 1995, 110 p.
  44. Worobiec A., Stefaniak E.A., Kiro S. et al. Comprehensive microanalytical study of welding aerosols with X-ray and Raman based methods. X-Ray Spectrom, 2007(36):328-335.
  45. Wultsch G., Nersesyan A., Kundi M. et al. The sensitivity of biomarkers for genotoxicity and acute cytotoxicity in nasal and buccal cells of welders. Int. J. Hyg. Environ. Health. 2014(217): 492-498.
  46. Yavetskiy R.P., Kosyanov D.Yu., Baumer V.N. et al. Low-agglomerated yttria nanopowders via decomposition of sulfate-doped precursor with transient morphology. J. Rare Earth. 2014 (32):320-325.
  47. Zimmer A.T. The influence of metallurgy on the formation of welding aerosols. J. Environ. Monit. 2002(4):628-632.
  48. Zimmer A.T., Baron P.A., Biswas P. The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process. J. Aerosol Sci. 2012(33):519-531.
  49. Zimmer A.T., Biswas P. Characterization of the aerosols resulting from arc welding processes, J. Aerosol Sci. 2001(32):993-1008.