Barbotko M.

MAXIM BARBOTKO, Postgraduate Student, e-mail: gsm_1234@mail.ru
Department of Hydraulic Engineering, Theory of Buildings and Structures of the School of Engineering
Far Eastern Federal University
8 Sukhanova St., Vladivostok, Russia, 690091

Numerical simulation of thermal stresses and strains in a cylinder with an elastoplastic shell and viscoelastic aggregate

Abstract: In this work, the problem of deforming an elastoplastic cylinder during a hot landing on a viscoelastic shaft has been solved numerically. The problem is written for a non-stationary temperature change, using the assumption of a generalized flat deformable state in the shaft-cylinder system. Accounting for the accumulation of irreversible plastic deformations in the cylinder is carried out by the method of additional deformations. The flow surface is given by the Huber–Mises equation. Viscoelastoplastic shaft deformation is described by the Boltzman–Volterra equations.

Keywords: temperature stresses, plastic deformations, thermo-visco-elastic-plastic stresses and deformations, axisymmetric composite cylinder, hot charging.

REFERENCES

1.       Boley B., Weiner J. Theory of temperature stress. M., Mir, 1964, 520 p.

2.       Burenin A.A., Dats E.P., Murashkin E.V. Formation of residual stress field in conditions of local thermal exposure. Izv. RAS. MTT. 2014;2:124–131.

3.       Burenin A.A., Dats E.P., Tkacheva A.V. To modeling hot landing. Sibir. J. industry mat. 2014(17);3:40–47.

4.       Burenin A.A., Tkacheva A.V., Scherbatyuk G.A. On the use of piecewise linear plastic potentials in the nonstationary theory of thermal stresses. Vestn. Samar. State Tech. Univ. Ser. Phys.-mat. science. 2018(22);1:23–39

5.       Burenin A.A., Tkacheva A.V., Scherbatyuk G.A. To the calculation of unsteady temperature stresses in elastoplastic bodies. Computational mechanics of continuous media. 2017(10);3:245–259.

6.       Bykovtsev G.I., Ivlev D.D. The theory of plasticity. Vladivostok, Dal'nauka, 1998, 528 p.

7.       Gorshkov S.A., Dats E.P., Murashkin E.V. Calculation of a flat field of temperature stresses under conditions of plastic flow and unloading. Bulletin of ChSPU named I.Ya. Yakovleva. 2014;3:169–175.

8.       Dats E.P., Murashkin E.V., Tkacheva A.V., Scherbatyuk G.A. Temperature stresses in an elastoplastic pipe depending on the choice of plasticity condition. Izv. RAS. MTT. 2018;1:32–43.

9.       Dats E.P., Tkacheva A.V., Shport R.V. Assembly design "ring in the ring" method of hot landing. Bulletin of the Chuvash State Pedagogical University. I.Ya. Yakovlev. Ser. Mechanics of limit state. 2014;4:225–235.

10.   Zhornik V.A., Prokopenko Yu.A. Temperature stresses in two-layer cylinders. Science and Technology: tr. XXVIII Ros. Wk. RAS. Vol. 1. M., 2008, p. 62–70.

11.   Zarubin V.S., Kuvyrkin G.N. Mathematical models of thermomechanics. M., Fizmatlit, 2002, 168 p.

12.   Ilyushin A.A., Pobedrya B.E. Fundamentals of the mathematical theory of thermoviscoelasticity.
M., Nauka, 1970, 280 p.

13.   Kartashov E.M. Analytical methods in the theory of thermal conductivity of solids. M., Higher School, 2001, 550 p.

14.   Kachanov L.M. Fundamentals of the theory of plasticity. M., Science, 1969, 420 p.

15.   Malinin N.N. Applied theory of plasticity and creep. M., Mechanical Engineering, 1968, 400 p.

16.   Savelieva I.Yu. Dynamic temperature stresses in an elastic body with a curvilinear boundary. Vestnik MGTU im. N.E. Bauman. Ser. Natural Sciences. 2018;1:38–46. DOI: 10.18698 / 1812-3368-2018-1-38-46

17.   Solonenko E.P. Calculation of temperature stresses in a viscoelastic cylindrical junction. Sv-in about state. Computer software registration number 2016661022. Reg. 09/28/2016.

18. Lyubimova O.N., Solonenko E.P. Thermo-mechanical relaxation of stresses in a glass-metal junction. J. l of Physics: Conference Series. 2016 (754)-082002.